
Distortion-Invariant Recognition via Jittered Queries

Dennis DeCoste and Michael C. Burl

Machine Learning Systems Group
Jet Propulsion Laboratory, California Institute of Technology

MIS 126-347
4800 Oak Grove Drive
Pasadena, CA 91109

(d e c o d e , burl) @aig.jpl.nasa.gov

Abstract
This paper presents a new approach for achieving

distortion-invariant recognition and classification. A
test example to be classified is viewed as a query in-
tended to find similar examples in the training set (or
class models derived from the training set). The key
idea is that instead of querying with a single pattern,
we construct a more robust query, based on the fam-
i l y of patterns formed by distorting the test example.
Although query execution is slower than if the invari-
ances were successfully pre-compiled during training,
there are significant advantages in several contexts: (i)
providing invariances in memory-based learning, (ii)
in model selection, where reducing training time at the
expense of test time is a desirable trade-off, and (iii)
in enabling robust, ad hoc searches based on a single
example. Preliminary tests for memory-based learning
on the NIST handwritten digit database with a limited
set of shearing and translation distortions produced an
error rate of 1.35%.

1 Introduction
Achieving invariances to certain types of distortions

by providing synthetically-distorted training examples
to a learning system is an approach that has met with
some success. For example, LeCun supplemented the
NIST handwritten digit set with ten random distor-
tions of each training example to encourage his LeNet
system to learn invariances to translation, scaling, and
skewing [5]. The resulting net produced the lowest
error rate (0.7%) reported for the dataset. In the
context of support vector machines, the use of “vir-
tual supports”, which are generated post-learning by
applying distortions to each support vector, has also
shown promise [8].

In this paper we explore a related but novel idea
that involves applying a dense set of distortions to

each test example at run-time. Since a test example
is essentially a query that is intended to find exam-
ples or class models that are similar to the probe, this
approach can be viewed as a way to generate a more
robust query that “understands” how the test example
might have looked if it were collected/generated un-
der different circumstances. Rather than burdening
the learning system with trying to know how all in-
stances of an object class could look under all possible
distortions, we focus in on a particular instance and
ask how that instance could look under the possible
distortions.

Shifting the responsibility for handling invariances
from the training side to the query side will cause an
increase in query execution time, but there are a num-
ber of significant advantages. In memory-based learn-
ing with a large reference library, e.g., a fingerprint
database, expanding the library to include all distor-
tions would be too expensive. Trying to trade space
for time by generating distorted versions of each li-
brary instance at run-time would also be prohibitive.
Note that in our approach, only the test example is
distorted, so there is a low space requirement, and
the time cost of generating distortions is amortized
because the same jittered query is made against each
instance of the reference library.

One of our primary motivations for query-side jit-
tering is to allow quick model selection during training
(moving the invariances to the query side avoids inflat-
ing the training time). As an example, consider using
cross-validation to select an appropriate distance ker-
nel. In the traditional approach, we would use a train-
ing set that has been greatly expanded (through the
inclusion of distortions) to learn, for example, a radial
basis function (RBF) representation using each of a
number of potential kernels. Evaluation of the result-

mailto:aig.jpl.nasa.gov

ing RBF’s over hold-out sets would enable selection of
the “best” kernel. With the new approach we would
use only the raw training set to learn RBF’s using
each potential kernel and then evaluate these RBF’s
over the hold-out sets using jittering on the test ex-
amples. Instead of multiplying the training time by
the number of jitters, the test time, which is typically
much shorter, is multiplied. Ultimately, we envision
using this procedure to do large-scale model selection
via “racing” [6, 21, which will allow quick rejection of
inferior hypotheses based on a partial evaluation over
the hold-out set.

Model selection could also include cross validation
to decide which candidate distortions are useful and
worth the time cost. Note that some distortions may
actually be harmful, e.g., 180 degree rotations will
cause confusion between the digits 6 and 9. Query-
side jittering will enable exploration of more candi-
date distortion sets than would be possible by train-
ing with expanded training sets (e.g., using some pre-
determined set of distortions). Once a useful set of dis-
tortions has been found, the invariances can be “com-
piled” back onto the model side by relearning on a
training set expanded by the useful distortions.

Another scenario, which blurs the distinction be-
tween query-side and training-side jittering, involves
construction of ad hoc queries from a single example
of an object of interest. For example, a user might
identify an object in an image and ask an automated
system to find similar objects. With just a single ex-
ample, the system does not have much to go on since
there is no knowledge of how the object could vary.
However, if the user also specifies a set of (partial)
invariances that the object should satisfy, the system
can derive a more robust model to use in its search.
This idea is discussed in the context of scale invariance
in [l]. An added benefit is that the desired invariances
are specified at run-time.

Finally, it may be easier to handle large distortions
from the query-side rather than the training-side. In
particular, a learning algorithm may be incapable of
generalizing to large distortions even if it is provided
with a large number of training examples. In LeNet5,
training examples were all pre-aligned through cen-
troiding and deslanting. It is not explicitly stated, but
inclusion of this step probably indicates that large dis-
tortions cannot be handled directly by their learning
algorithm.

2 Kernel k-Nearest-Neighbors Using
Eigen-Digits

For simplicity, this paper explores query-side dis-
tortions (Le. jitters) within the context of k-nearest-

neighbors classification [3].
For generality, we employ nearest-neighbors using

the large space of dot-product kernel distance metrics,
as first suggested in [9]. The distance between two
d-dimensional feature vectors xi and xj is defined as:

with kernel function K(zi,zj) = K(z? * Z C ~) . For
example, a polynomial kernel is defined as K (z) =
zp + b, for suitable parameters p and b. The same
relative distance orderings as standard Euclidian dis-
tance (without the final square root) is obtained from
distK(zi, zj) using p = 1 and b = 0 for this kernel.
Furthermore, using p = 2 gives the Euclidian distance
between two expanded vectors of size O(d2) , each rep-
resenting every product of one or two features from
the corresponding original vectors xi and x j . Various
values for b correspond to different relative weight-
ings of each such product. Thus, dot-product kernels
provide nonlinearities in a computationally-efficient
manner, by squashing dot-products of the original d-
dimensional feature vectors - without requiring ex-
plicit representation of the underlying large (possibly
infinite) expanded dimensionality. Other common ker-
nels include equivalents for 2-layer radial basis and
sigmoidal neural networks.

For a d-by-1 query vector Z, and a d-by-N train-
ing set matrix B , let B(:,i) indicate the i-th d-by-
1 column-vector of B. Define the corresponding 1-
by-N kernel distances distK(z,,B) = [dzstK(s,, B (:
, l)) , ..., distK(z , ,B(: ,N))] . This vector distK(z,,B)
can be obtained simply by first computing: the l-by-
N vector of dot-products P,,B = ZT * B , the scalar
p, , , = ZT * x , , and the 1-by-N ~ B , B = sum(B. *
(Note that ~ B , B can be efficiently pre-computed once.)
Applying the kernel squashing function K(z) to each
element of those three resulting dot-product vectors,
and then combining them according to the definition
of kernel distance, yields vector distK(z,, B) . Thus,
the remainder of this paper focuses on computing (ap-
proximating) the dot-product p , , ~ . In this paper,
the k-nearest-neighbor classification of zq is the most-
common label of the k examples B(:,i) with smallest

Brute-force computation of p , , ~ corresponds to
simple linear scanning of the entire training set, which
involves O(d*N) effort for classifying each query.
Standard speedups, such as kd-trees, do not apply well
in our context, both because the feature dimensional-
ity (d) of our domains is too high and because the
kernel distance metrics are not Euclidian in the origi-

‘The operator .* denotes element-by-element multiplication
as in MATLAB. The summation is taken down the columns of
B. * B.

diStK(Zi, Zj) = K(Z2, Zi) - 2 * K(Zi, Z j) + K(Zj, Z j) ,

distK(z,, B (: , i)) .

nal feature space. So, instead, we consider techniques
similar to those of eigen-faces [12, 131. Namely, we use
Singular Value Decomposition (SVD) to decompose
(or approximate) B into a product UB * S B * V ~ , where
U B , SB, vz are respectively, d-by-kB, kB-by-kB, and
kB-by-N. For k~ < d, one can more efficiently (but
approximately) compute p q , B as (x: * U B) * (SB * v:),
with only O(d * k~ + kB2 * N) complexity2. One nov-
elty in our approach is that we also do SVD on the
query, as will be discussed later.

3 Query Jittering
Nearest-neighbor classification should pick the k

training examples with the smallest distance to any
jittered version of the query. To obtain some prelimi-
nary results on image data, we focussed on the follow-
ing shearing and translation jitters.

Horizontal shearing involves shifting left or right
each row of a two-dimensional image by certain dis-
crete numbers of pixels, such that all the shifts corre- ,
sponding to each row together approximate some slant
angle (with zero angle being vertical at the center of
the horizontal-axis). In particular, we consider those
for which the bottom-most row is shifted in each pos-
sible discrete amount. For example, for a 28x28 im-
age, this yields 28 jittered versions (including the orig-
inal). We mass-recenter the resulting sheared images
(so that the average location of the pixel intensities is
the center p i ~ e l) ~ . Such shearing is a fast approxima-
tion that does not change the pixel intensities (only
their locations) and is particularly common for do-
mains such as character recognition, where horizontal
lines should be retained.

Box-shift translation involves shifting the entire
image horizontally and/or vertically some discrete
amount. A “3x3” box jitter means shifting 0 or 1
pixels along each of the two axes. We perform box
jittering on top of each sheared jitter.
3.1 Efficient Jittering via SVD

For a given number J of jitterings of a given query,
the key challenge is to efficiently compute a sufficient
approximation of the J-by-N distance matrix. One
technique is to prefilter: only bother computing dis-
tances between query jitters and those (say 1%) of
the training examples which are closest to the original
query vector. In tangent distance work [ll], this is
reasonable because they already assume the distance
grows smoothly as the query distorts. Query blur-
ring often helps such pre-filtering work well. We have

21n practice, to minimize approximation errors, we SVD the

3We also assume that each original image is normalized by
training examples for each class separately.

its standard deviation.

explored the following “query compilation” method
which does not require such smoothness.

Let A, be the J-by-d transposed matrix of jitters
of query x g and B be the d-by-N matrix of training
data. Brute-force computation of the J-by-N distance
matrix would involve O(J * d* N) operations. Approx-
imating B by SVD (retaining k~ components) reduces
time complexity to O (J * d * k g + J * k g * N) . By
also approximating A, using SVD (retaining k~ com-
ponents), one can reduce this complexity to O(k~ * d *
k~ + k~ * k~ * N + J * k~ * N) . This still involves
O (J * N) , but can be k ~ / k ~ faster. It can be rea-
sonable, for example, to have k g = 40 while k~ = 4,
since the query SVD need only minimize variance for
related jitters of one example.

To make this work, the SVD of A, into UA * SA *
VI must be fast. We speed up this step by taking
advantage of two facts: we only need k~ components
and UA need not be orthogonal for our purposes. This
is an ideal application for the recent EMPCA method
[7], which has complexity O (J * d * k ~) . Furthermore,
it is an iterative EM algorithm for which a couple of
iterations often yields reasonable approximations of
UA and SA. To best approximate A,, we take the UA
and SA resulting from a few iterations of EMPCA and
then compute VA = Si1 * U x * A.

Ideally, one would determine a good kA for each
query (e.g., by looking at drop-off in eigenvalues).
However, our current implementation assumes a fixed
user-supplied kA. Nevertheless, the potential to select
a query-dependent kA is another advantage of doing
query-side (vs training-side) jittering.

4 Results: MNIST digit recognition
The MNIST data set [4] is a well-studied bench-

mark that consists of 60,000 training examples and
10,000 test examples. Each example is a 28x28 pixel
image with 256 grey-levels and precentered by mass.

Results on the MNIST data set using various query
jitters are shown in Figure 1, along with some key
results of previous studies.

As in [5], we explored pre-applying shearing distor-
tions to training and test datasets. Deskewings refers
to replacing an example image with the sheared ver-
sion for which the first principal axis is as vertical
as possible. As expected, the SVD’s of the deskewed
training data were somewhat better than for the origi-
nals (lower reconstruction errors and faster eigenvalue
drop-off, for each class).

The 2.37 vs 2.4 result suggests that using 40 compo-
nents from SVD of the train set (per class) may give as
much benefit as deskewing the datasets, presumably
because of the feature-extraction benefits of SVD.

errors
5.0

POLY p train comps box jitter deshear jitter deskew method

1 all Y 3-NN 2.4
1 all 3-NN

1.53

NA NA random (training) boost-LeNet4 0.7
9 NA random (training) virtual SVM 0.8

NA NA LeNet4 1.1
1 NA implicit tangent dist 1.1
4 NA random (training) SVM 1.4
1 40 3x3 28 1-NN 1.35
1 40 3x3 Y 1-NN

Figure 1: Errors rates on MNIST 10,000 test examples
See [4, 51 for details of methods listed in the upper and lower sections of the table.

The 1.66 vs 1.92 result suggests that query-time
shear jitters are more effective than deskewing. The
1.35 vs 1.53 result suggests that this holds even when
some box jittering is done as well.

Unfortunately, our current implemented class of
query jitters (translation and shearing rotation) is a
subset of those used in the reported tangent distance
result (which includes scaling and line thickness as
well). So we do not yet know how much our 1.35
result might improve beyond tangent distance’s 1.1,
using all such jitters.

The best reported results involve random distor-
tions to the training set (about 10 per training exam-
ple). Due to both time and space limitations, system-
atic distortions of the train set would be infeasible.
Virtual support methods for SVM’s attempt to over-
come this issue by only distorting supports; however,
systematic, densely-sampled distortions will still often
be infeasible on the training set side.

We found that using various p > 1 for the polyno-
mial kernel distance has not provided significant test
error reduction (contrasting reported support vector
machine results). We postulate that perhaps such ker-
nels may be more effective when used in the context
of maximum-margin classifiers per se, such as SVM’s.
For example, although [lo] reports good results using
such kernels for nonlinear SVD, the resulting SVD fea-
tures were ultimately feed into a linear SVM to achieve

those results.

5 Conclusions
The related tangent distance approach considers lo-

cal distortions of both the training and query exam-
ples, but only for relatively minor distortions for which
smoothness can be assumed. In contrast, our work
here tries to avoid making such an assumption, and
instead capture local invariances in a query-specific
manner, through explicit procedural expansion (jit-
tering) followed by structural compression (SVD).

Even when query jittering is no faster than alter-
natives for a given query, it might still lead to faster
overall training, through use of “racing” and amortiz-
ing that cost over many models during model selec-
tion. A motivation of this work is that query jittering
during racing (using a cheap memory-based method
such as nearest-neighbors) might help filter a vast
space of alternative distance metrics for a final more-
sophisticated memory-based method (such as support
vector machines). To make this work well, there would
need to be a strong correlation between distance met-
rics that work well in both methods.

A key limitation of this current work is that ul-
timately our use of SVD cannot overcome the com-
binatorial growth in the number of jitters (J) for a

4For example, our 1.35 MNIST result took 40 hours on a
Sun Sparc UltraGO.

135 images

Figure 2: Test errors for 1.35 result
Upper right (of each box): first digit is (mis)classification, second is true label;
lower left (of each box): example number (from size 10,000 test set).

given query, which arises from cross-product nature of References
combining jitter classes. Within our formalism, the [I1
challenge is to reduce the effective J so that the final
distance matrix is no longer linear in J (i.e. avoid con- i21
structing the entire J-by-N matrix). We are currently
experimenting with new adaptive methods which do
such reduction in the effective J , by treating each jit-
ter as a training example from which to learn to better [31
interpolate the UA mapping matrix over an even larger
(implicit) J . [41

~~

Acknowledgments [51

The research described in this paper was carried
out by the Jet Propulsion Laboratory, California Insti-
tute of Technology, under a contract with the National
Aeronautics and Space Administration.

P I

M.C. Burl. Continuously-scalable template models. (In
review), 1999.

S. Chien, J. Gratch, and M. Burl. On the efficient allo-
cation of resources for hypothesis evaluation: A statistical
approach. IEEE Trans. Pattern Analysis and Machine In-
telligence, 17(7):652-665, 1995.

R.O. Duda and P.E. Hart. Pattern Classijcation and
Scene Analysis. Wiley, 1973.

Y . LeCun. MNIST dataset.
(www.research.att.com/Nyann/ocr/mnist/).

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. In Pro-
ceedings of the IEEE, Nov 1998.

A. W. Moore and M. S. Lee. Efficient algorithms for min-
imizing cross validation error. In Proceedings of the f l t h
International Conference on Machine Learning, 1994.

" .

135 images

Figure 3: Nearest neighbors for test errors for 1.35 result
Upper right (of each box): true digit label;
lower left (of each box): example number (from size 60,000 train set).

Sam Roweis. EM algorithms for PCA and SPCA. In Neural [12] L. Sirovich and M. Kirby. A low dimensional procedure for
Information Processing Systems, volume 10, pages 626-
632, 1997.

the characterization of human faces. Journal of Optical
Society of America, 4(3):519-524, 1987.

B. Scholkopf, C. Burges, and V. Vapnik. Incorporating in-
variances in support vector learning machines. In Artificial
Neural Networks - ZCANN'96, 1996.

[13] M. Turk and A. Pentland. Eigenfaces for recognition. Jour-
nul of Cognitive Neuroscience, 3(1), 1991.

B. Scholkopf, A. Smola, and K.R. Miiller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Technical
report no. 44, Max-Planck-Institut for Biologische Kyber-
netik, Tiibingen, Dec 1996.

B. Scholkopf, A. Smola, and K.R. Miiller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Neural
Computation, 10(5):1299-1319, 1998.

P. Simard, Y . LeCun, and J. Denker. Efficient pattern
recognition using a new transformation distance. In Ad-
vances in Neural Znformation Processing Systems, vol-
ume 5, pages 50-58, 1993.

